

Complimentary Educational Session for Cardiology Fellows Sep 30, 2015

Echo in Emergency and Critical Care Settings

Common pitfalls and role of echo in decision making

Teerapat Yingchoncharoen MD.

Ramathibodi Hospital

Mahidol University

Outline

- Basic standard echo view
- Cases of echo in critical and emergency settings

IVC size

Guidelines for the Echocardiographic Assessment of the Right Heart in Adults

Adapted from: Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB, Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography, J Am Soc Echocardiogr 2010;23:685-713.

Right Atrial Pressure

Estimation of RA pressure on the basis of IVC diameter and collapse

Variable	Normal (0-5 (3) mmHg)	Interm (5-10 (8)	ediate mmHg)	High (15 mmHg)
VC diameter	≤2.1 cm	≤ 2.1 cm	>2.1 cm	> 2.1 cm
Collapse with sniff	>50%	<50%	>50%	< 50%
Secondary ndices of elevated RA pressure				 Restrictive filling Tricuspid E/E' >6 Diastolic flow predominance in HV

J Am Soc Echocardiogr 2010;23:685

IVC size and RA pressure

J Am Soc Echocardiogr 2010;23:685

Causes for IVC enlargement in the presence of Normal RAP

Prominent Eustachian valve
Athletic training
Large BSA
Mechanical ventilation
Narrowing of the IVC-RA junction
Web or tissue present in the IVC

Non-invasive assessment of RAP

J Am Soc Echocardiogr 2013;26:1033-42

PHILIPS

RAMATHIBODI HOSPITAL

FR 58Hz 12cm

2D 55% C 50 P Low HGen

and the second

MB

Diastole **Right ventricular free wall** Interventricular Membranous septum septum Anterior leaflet **Right coronary cusp** RV (mitral valve) Ascending aorta Postero-medial LV Ao LVOT papillary muscle Non-coronary cusp LA Posterior wall (left ventricle) **Descending thoracic** Pericardium aorta **Coronary sinus**

<u>Structure</u>

- -Chamber size
- -Wall thickness
- -Valve structure, morphology integrity
- -Mass (tumor, clot, vegetation)
- -Pericardial effusion
- -Congenital heart disease

Function

-Global systolic function -Regional wall motion

PSAX : AV level

Observe:

Aortic valve cusp (numbers, mass) LA, RA IAS ? ASD LAA thrombus TV, RVOT PV and proximal PA

PSAX Pulmonary trunk bifurcation

Look for : PDA, PV disease (PS/PR), RVOT obstruction, PE

Mahidol University

RAMATHIBODI HOSPITAL

PSAX : MV Level

Mitral valve function and structure MVA : Planimetry Localize the MV lesion

RAMATHIBODI HOSPITAL

PSAX : Mid LV Level

LV function Septum thickness and motion RV size Pericardial effusion

RVVO Vs RVPO

ventricular septal flattening in diastole only

ventricular septal flattening in both systole and diastole

PSAX : Apex

LV apical motion LV thumbs

Mahidol University

Apical 4 chamber

- Global function view
- Function of MV and AV
- LV size, LA / RA size

Apical 5 chamber

- Tilt the probe anteriorly
- Good Doppler alignment for LVOT and MV
- Color Doppler assessment for AR and MR
- Subvalvular vs. valvular aortic stenosis

Echo Estimation of SV and CO

- Volumetric determination
 - -SV = EDV-ESV
 - $-CO = SV \times HR$
- Doppler determination

 Hydraulic orifice formula
 >Using LVOT and TVI

Volumetric Flow

Flow Rate

Calculation of Stroke Volume SV = LVOT diameter² x 0.785 x LVOT TVI

x 0.785 x

Pitfall : LVOT Measurement

Correct Angle

Oblique angle (Overestimation)

Subaortic septal rim (Underestimation)

Pitfall : LVOT VTI Measurement

Correct recording site (VTI = 28 cm)

Too far from the aortic orifice (VTI underestimated : 23 cm)

Too close to the aortic orifice (VTI overestimated : 36 cm)

Mahidol University

Conservation of Mass Principle

Mahidol University

Foreshortening

- Foreshortening
- Inward motion of the apex
- True apex not visualized
- Volume underestimation

Apical 2 chamber

- Only LA & LV (+MV)
- Occasionally LAA
- Correspond to RAO

Apical 3 chamber

PHILIPS	RAMATHIBODI HOSPITAL	.3
FR 53Hz 14cm		МЗ
20 58% C 50 P Low HGen		
() P 1.7 3.4		з 54 bpm

- LA, LV, aorta
- Correspond to PLAX
- (sub)valvular obstruction (HOCM)

Mahidol University

Subcostal View

- ASD/VSD visualization
- RV wall thickness
- Pericardium
- Used in patients with limited echo windows

Mahidol University

Echo in emergency and critical care

Mahidol University

Echo in emergency and critical care

Echo Evaluation of pericardial effusion

Section

- Consolidation or associated mass
- Seculation
- Hemodynamics
- Clearance for tap

Differentiating Pericardial Vs Pleural effusion

Echo in emergency and critical care

Quantification of pericardial effusion

Klein AL et al. J Am Soc Echocardiogr 2013; 26:965-1012

Location of pericardial effusion

The most sensitive sign of tamponade is "cyclic compression"

RA Collapse

Any RA collapse

100% sensitivity 88% specificity

RA Inversion Time Index (RAITI) RA collapse >1/3 cardiac cycle

94% sensitivity 100% specificity

Total # frames with inversion Total # frames in the cardiac cycle RA collapse begins in end diastole and continues into systole. Considered an "earlier" sign of tamponade.

Mahidol University

Gillam LD et al. Circulation 1983; 68:294-301

The most sensitive sign of tamponade is "cyclic compression"

RA Collapse

Any RA collapse

100% sensitivity 88% specificity

RA Inversion Time Index (RAITI) RA collapse >1/3 cardiac cycle

94% sensitivity 100% specificity

Total # frames with inversion Total # frames in the cardiac cycle RA collapse begins in end diastole and continues into systole. Considered an "earlier" sign of tamponade.

Mahidol University

Gillam LD et al. Circulation 1983; 68:294-301

The most sensitive sign of tamponade is "cyclic compression"

RV Collapse

•Most commonly involves the RV outflow tract (more compressible area of RV)

•When collapse extends form outflow tract to the body of the right ventricle, this is evidence that intrapericardial pressure is elevated more substantially Considered a "later" sign of tamponade

RV collapse occurs in early diastole

48-93% sensitivity 50-100% specificity

Echo in emergency and critical care

Doppler Respiratory Variation

- Normal
 - -MV inflow variation <10%
 - -TV inflow variation <25%
- In tamponade
 - –MV inflow variation usually >30%
 - –TV inflow variation usually >60%

Consensus Guideline : E(exp)-E(insp) / E(exp)

Mahidol University

Hutchison S. Pericardial Diseases, 2009.

Tamponade : Echo and Doppler features

- RA collapse
- RV collapse
- Dilated IVC with lack of inspiratory collapse
- Abnormal respiratory variation in tricuspid and mitral flow velocities
- Abnormal hepatic vein flow (expiratory diastolic reversal)
- LA compression (severe)
- LV diastolic compression (severe)
- Swinging heart

Common access for pericardiocentesis

Mahidol University

Echo in emergency and critical care

Clearance for the pericardiocentesis

At least 1 cm fluid between visceral and

parietal pericardium

No significant adhesions

Effusions not consolidated

Path to pericardium not THROUGH the liver

I2E 2015 Echo in CAD

Echocardiographic Contraindications to ECMO

Absolute contraindications to VA ECMO/LVAD

- Aortic dissection (unrepaired)
- Severe aortic regurgitation
- Coarctation of the aorta (unrepaired)

Relative contraindications to VA ECMO/LVAD

- Severe aortic atheroma
- Abdominal/thoracic aortic aneurysm with intraluminal thrombus

Absolute contraindications

- to VV ECMO
- Severe ventricular dysfunction
- Cardiac arrest
- Severe pulmonary hypertension

Relative contraindications to VV ECMO

- Large PFO/ASD
- Significant TV pathology (TS/TR)

THANK YOU FOR YOUR ATTENTION

EMAIL : teerapat.yin@mahidol.ac.th